Functional equations of prehomogeneous zeta functions and intertwining operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential equations and intertwining operators

We show that if every module W for a vertex operator algebra V = ∐ n∈Z V(n) satisfies the condition dimW/C1(W ) < ∞, where C1(W ) is the subspace of W spanned by elements of the form u−1w for u ∈ V+ = ∐ n>0 V(n) and w ∈W , then matrix elements of products and iterates of intertwining operators satisfy certain systems of differential equations. Moreover, for prescribed singular points, there exi...

متن کامل

Functional Equations Satisfied by Intertwining Operators of Reductive Groups

This paper generalizes a recent work of Vogan and Wallach [VW] in which they derived a difference equation satisfied by intertwining operators of reductive groups. We show that, associated with each irreducible finitedimensional representation, there is a functional equation relating intertwining operators. In this way, we obtain natural relations between intertwining operators for different se...

متن کامل

Functional equations for double zeta-functions

As the first step of research on functional equations for multiple zeta-functions, we present a candidate of the functional equation for a class of two variable double zeta-functions of the Hurwitz–Lerch type, which includes the classical Euler sum as a special case.

متن کامل

Functional Equations for Zeta Functions of Groups and Rings

We introduce a new method to compute explicit formulae for various zeta functions associated to groups and rings. The specific form of these formulae enables us to deduce local functional equations. More precisely, we prove local functional equations for the subring zeta functions associated to rings, the subgroup, conjugacy and representation zeta functions of finitely generated, torsion-free ...

متن کامل

zeta functions for nonminimal operators.

We evaluate zeta-functions ζ(s) at s = 0 for invariant non-minimal 2nd-order vector and tensor operators defined on maximally symmetric even dimensional spaces. We decompose the operators into their irreducible parts and obtain their corresponding eigenvalues. Using these eigenvalues, we are able to explicitly calculate ζ(0) for the cases of Euclidean spaces and N -spheres. In the N -sphere cas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 2006

ISSN: 0025-5645

DOI: 10.2969/jmsj/1179759534